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A NOTE ABOUT THE SOLUTION OF MATRIX SYLVESTER EQUATION

F.A. ALIEV1, V.B. LARIN2

Abstract. Algorithms for solving the matrix Sylvester equation are reviewed. In the first

algorithm the specific form of the matrix Sylvester equation is used. The possibility of using

the procedures of symbolic calculation for increasing the accuracy of this algorithm is discussed.

In the second algorithm the techniques of linear matrix inequalities are used. The comparison

of accuracy of these algorithms is discussed for some examples.
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1. Introduction

The problem of developing the algorithms for solving the Sylvester equation

AX −XB = C. (1)

have attracted attention of researchers (see [2, 5, 8, 10, 12] and references therein). In (1), A,B

are quadratic matrices of sizes A ∈ Cn×n, B ∈ Cm×m. In the iterative procedure for finding the

solution of an asymmetric Riccati equation, considered in [1, 3, 8, 9], a problem arises (relation

(2.1) [8]) for constructing the solution (1) supplemented by the following relation:

DX = G, (2)

where D,G are matrices of appropriate dimensions.

Below the problem for finding the solution of system (1), (2) is considered. In this connection,

it is proposed to use the algorithm [11] to construct the solution of (1), which allows one to

transform the system (1), (2) into the system (10). In turn, this allows one to use the standard

MATLAB package procedures to find the desired matrix X.

2. Equation (1)

In [11], a finite expression for the matrix satisfying the matrix equation (1) is given.

According to [11], the solution of this equation has the form

X = − (Cn + p1Cn−1 + . . .+ pn−1C1) [PA(B)]−1 , (3)

where PA(t) is the characteristic polynomial of the matrix

PA(t) = tn + p1t
n−1 + . . .+ pn−1t+ pn, (4)
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and the matrices Cn are defined by

Cn =

n∑
k=1

An−kCBk−1. (5)

The expression (3) is a consequence of the more general relation obtained in [11], namely, if

Π(t) = tn + π1t
n−1 + . . .+ πn−1t+ πn (6)

is a certain polynomial, then the solution of equation (3) satisfies the following relation:

Π(A)X −XΠ(B) = Cn + π1Cn−1 + . . .+ πn−1C. (7)

The formula (3) can be obtained if Π(t) in (8) is chosen to be equal to PA(t).

If in (7) we choose as the polynomial the characteristic polynomial of the matrix B:

Pb(t) = tm + q1t
m−1 + · · ·+ qm−1t+ qm, (8)

then the solution of (1) will satisfy the following relation:

Pb(A)X = Cm + q1Cm−1 + · · ·+ qm−1C. (9)

The matrices Cℓ (ℓ = 1 : m) from (9) are determined by relations analogous to (5).

Complementing (9) with the relation (2), we obtain the system of equations that determine the

unknown matrixX:[
Pb(A)

D

]
X =

[
Cq

G

]
, Cq = Cm + q, Cm−1 + · · ·+ qm−1C. (10)

The various algorithms can be used for solving the system (10), in particular, the procedure ”\”
of the MATLAB package.

Note that for obtaining the solution in the more general case (when the system consists of two

pairs of equations (1), (2) (the relations (3.2) [5])), it is possible to effectively use the algorithm

[4] to find the solution of the system of periodic Sylvester equations.

3. Example 1

Let the matrices A,B,C,D,G from equations (1), (2) have the form:

A =

 1 2 1

2 4 2

3 4 5

 , B =

[
1 2

3 6

]
, C =

 −2 −12

8 0

20 10

 , D =
[
1 1 1

]
, G =

[
6 6

]
.

The corresponding polynomial isPb(A) = A2 − 7A. According to (10), the matrix Cq has the

form:

Cq =

 10 6

20 12

36 44

 .

The exact solution X of the system (1), (2) with this initial data has the form:

X =

 1 3

2 2

3 1

 .

As a result of solving the system (1), (2), a solution Xn is obtained, with the corresponding

inaccuracy er = norm(X −XΠ, inf) being

er = 2, 6 · 10−15.



F.A. ALIEV, V.B. LARIN: A NOTE ABOUT THE SOLUTION OF MATRIX ... 253

Note that the above procedures allows for the implementation of calculations with arbitrary

accuracy by using the MATLAB package Symbolic Math Toolbox.

Next, let us consider the algorithm for solving equations (1), (2), which uses the procedures

of linear matrix inequalities (LMN), namely, the LMI toolbox of the MATLAB package [7].

4. Solving equations (1), (2) using the LMI toolbox of the MATLAB package

Let us consider the corresponding procedures.

As noted in [7] (relations (2.3), (2.4)) lead to the matrix inequality[
Q(x) S(x)

ST (x) R(x)

]
> 0, (11)

where the matrices Q(x) = QT (x), R(x) = RT (x), S(x) are linearly depend on x . This is

equivalent to the following matrix inequalities:

R(x) > 0, Q(x)− S(x)R−1(x)ST (x) > 0. (12)

Let us now consider the following LMI:[
Z T

T T I

]
> 0, Z = ZT , Z < λI. (13)

Here and below the superscript denotes transposition, I is the unit matrix of appropriate size,

λ is scalar. Taking into account (11), (12), the relations (13) can be rewritten as

Z > T T T , Z < λI or λI > T T T . (14)

The relations (14) allow us to consider the following standard LMI problem for eigenvalues (p.

2.2.2 [6]), namely, the minimization problem of λ when conditions (14) are satisfied.

The relations (13) can be generalized in the form of the following LMI system:[
Z Ti

T T
i I

]
> 0, i = 1, 2, . . . , kZ = ZT , Z < λI, (15)

which can be represented in the form similar to (14):

Z > T iT
T
i , i = 1, 2, . . . , k Z < λ I. (16)

With respect to (16), one can also consider the standard LMI problem for eigenvalues and use

the gevp.m procedure of the MATLAB package to solve it [7].

We use the above relations to find the solution of equations (1), (2). Suppose that in (15) the

matrices T1, T2 have the form

T1 = AX −XB − C, (17)

T2 = DX −G. (18)

If necessary, the matrices D,G in (18) need to be supplemented with zero blocks so that the

matrices T1T
T
1 , T2T

T
2 would be of the same size (see Example 2).

Using the gevp.m procedure of the MATLAB package, we find the minimum value of λ (and

the corresponding value X), in which the relations (16) are satisfied. Obviously, for a sufficiently

small λ, the norm of the matrices Ti will also be enough small, i.e. T ∼= 0 and, consequently,

obtained as a result of using the procedure gevp.m, the value X can be considered as the solution

of equations (1), (2) obtained with a certain accuracy. In connection with the fact that one has

not minimized the norm of the matrices Ti , but the norm of the matrices TiT
T
i , we can expect

a decrease of the accuracy of the result of solving of the equations (1), (2).
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5. Example 2

The initial data coincide with those in Example 1, except the values of the matrices D and

G, which, in accordance with the remark made above, respectively to the relations (17), (18),

are taken in the following form

D =

 1 1 1

0 0 0

0 0 0

 , G =

 6 6

0 0

0 0

 .

As a result of using the procedure described in p.4, a matrix XΠ , which is the solution of (1), (2)

and the values of the matrices T1, T2 , were obtained, with the following norms of corresponding

inaccuracies:

∥T1∥∞ = 1, 3 · 10−9,

∥T2∥∞ = 2, 9 · 10−9,

∥XΠ −X∥∞ = 7, 2 · 10−9.

Thus, the accuracy of the obtained solution (1), (2) in this example is lower than the accuracy

provided by the algorithm p.2.

6. Conclusion

The algorithms for solving the Sylvester equation by an additional linear equation is consid-

ered. The first algorithm uses the specific form of the Sylvester equation. It is noted that it is

possible to use the procedures of symbolic computations in this algorithm in order to improve the

accuracy of the result. The second algorithm uses procedures of the linear matrix inequalities.

The accuracies of these algorithms are compared in several examples.
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